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1 
Introduction 

Historically, the quantitative study of sound has been wedded to the development of 
sound-measurement technology. Researchers have routinely seized on and resource­
fully adapted various technological tools, whether intended for sound analysis or not. 
Sabine (1900 ), for example, developed acoustical reverberation theory in an empty thea­
ter at Harvard University, using an organ pipe, a chronograph, and his own hearing to 
measure reverberant sound duration. Similarly, Brand (1934) characterized the time­
varying frequency of birdsong by recording vocalizations on motion-picture film and 
measuring spatial line-density on the soundtrack. Successive milestones in sound­
measurement technology - notably the microphone, the oscilloscope, and later the 
sound spectrograph - helped researchers to visualize and measure sounds but not to 
model them directly. Modeling of acoustic communication was instead typically per­
formed indirectly via statistical analysis, comparison, and classification of individual 
measured sound features. 

The development of digital computers has allowed researchers to extend and auto­
mate sound-measurement capabilities in many areas. However, the most important 
impact of this technology on bioacoustics may ultimately be the resulting accessibility 
of sophisticated mathematical tools for modeling sound structure, and the integration 
of these tools into the measurement process. The implications of this mergerrange from 
dramatic improvement in efficiency to the opportunity to conduct sophisticated inter­
active experiments in which the computer, for instance, presents stimuli, receives and 
analyzes resulting behavioral respohses, and selects stimuli on this basis for the next 
testing cycle. Mathematical tools allow the investigator to measure and manipulate 
features ranging from discrete sound parameters, such as time and frequency maxima, 
to more comprehensive sound properties, such as t ime-varying amplitude and fre­
quency and overall spectrographic similarity. 

This chapter describes digital measurement and modeling techniques while provid­
ing a practical survey of the tools available to bioacousticians. Topics include measure­
ment of detailed time and frequency parameters over precise intervals, real-time analy­
sis and display of individual spectra and spectrograms, digital sound comparison and 
statistical classification, precise rearrangement of sound elements in the temporal do­
main, and sound synthesis based on natural sounds, mathematical functions, or both. 
Synthesis manipulations such as arithmetic operations, sound combination, time and 
frequency shifting and rescaling, frequency modulation, harmonic manipulation, and 
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noise addition and removal are covered. Digital sound analysis technology has been 
applied to a wide variety of animal groups, notably primates (e.g., Owren and Bernacki 
1988; Hauser 1991, 1992; Hauser and Schon-Ybarra 1994), anurans (e.g., Gerhardt 1989, 
1992; Ryan et al.1992), birds (e.g., Nowicki and Capranica 1986; Nelson and Croner 1991; 
Suthers et al. 1994; Nelson et al. 1995), insects (e.g., Wells and Henry 1992; Stephen and 
Hartley 1995), and marine mammals (e.g., Clark 1982; Buck and Tyack 1993). 

More advanced topics in signal analysis, measurement theory, and digital technology 
applicable to sound analysis are discussed in other works. These include mathematical 
signal analysis (Schafer 1975), engineering measurement theory (Randall1977), digital 
hardware principles and guidelines (Stoddard 1990 ), and signal analysis and bioacous­
tic instrumentation (Rosen and Howell1991). Digital sound analysis systems have been 
developed for various computers, including DEC minicomputer (Beeman 1987), IBM 
PC (Beeman 1989, 1996b), Amiga (Richard 1991), and Apple Macintosh (Charif et al. 
1995)-

2 
Temporal and Spectral Measurements 

Animals and humans respond to both the temporal and spectral structure of sounds. 
Biologically important sound attributes include temporal properties such as duration, 
repetition, and sequencing of sound elements, as well as spectral properties such as 
frequency, bandwidth, harmonic structure, and noisiness. Temporal properties can be 
measured from the amplitude-time waveform, which specifies acoustic pressure as a 
function of time, and the amplitude envelope, which specifies time-averaged acoustic 
intensity as a function of time. Spectral properties can be derived from the power spec­
trum, which specifies energy distribution as a function of frequency, and the frequency­
time spectrogram, which specifies energy distribution as a function of both frequency 
and time. Significant information can be encoded in both the temporal and spectral 
domains of sound signals, and the following sections provide a survey of the digital 
techniques used to extract and analyze the associated acoustic properties. 

Digital signal analysis typically begins with the measurement of basic time and fre­
quency parameters. Important components include maximum and minimum values 
and the associated time and frequency coordinates. These extrema can be measured 
over the entire sound or, by restricting the analysis window to specific segments, over 
a succession of signal intervals. Temporal and spectral examples include, respectively, 
the peak level of an amplitude envelope and its time coordinate, and the amplitudes 
and frequency coordinates of successive peaks within a spectrum. These measurements 
can be compared statistically over an ensemble of signals to assess a wide variety of 
features. Important characteristics of the time waveform include its average signal level 
(which, if different from zero for an acoustic signal, may indicate instrumentation prob­
lems), and its root-mean-square (RMS) signal level (the square-root of the time-aver­
aged squared amplitude), which is the standard measure of signal energy. Other pa­
rameters of interest that are available from spectrographic representations include the 
overall duration of a signal, its frequency range, and successive maxima and minima 
in its time-varying pitch contour. 
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Fig. I. Measuring duration, amplitude, and root-mean-square (RMS) level of a swamp sparrow 
(Melospiza georgiana) syUable from its waveform (top panel) and amplitude envelope (bottom panel) 
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In a digital environment, measurements can be performed on individual notes, en­
tire calls, or average signals derived from an ensemble of sounds (Beeman 1996b ). Using 
the results of such measurements, the sounds can then be manipulated individually or 
in groups. For example, an ensemble of sounds can be normalized to the same sound 
energy level before playback, by dividing each sound by its own RMS value. Figure 1 
illustrates the use of digital techniques to measure the duration, amplitude, and RMS 
value of a time waveform and its associated amplitude envelope, while Figure 2 shows 
frequency and amplitude measurements of peaks in a power spectrum. 

3 
Time-Varying Amplitude Analysis 

3.1 
Amplitude Envelopes 

Temporal analysis is concerned with the location, duration, and pattern of sound 
events, such as the sequence and timing of notes within a song, songs within a calling 
sequence, or the pattern of variation in sound intensity (see Gerhardt, this Volume, for 
discussion of terminology used to distinguish acoustic units in the temporal domain). 
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Although many parameters of interest can be measured directly from the time-ampli­
tude waveform, it can be more efficient and objective to derive these from the corre­
sponding amplitude envelope. 

Visually, the amplitude envelope traces the outline of a waveform, as shown in Figure 
3· Such tracking is achieved mathematically by jumping from peak to peak and bridging 
valleys of the signal, with the goal of retaining larger-scale and potentially meaningful 
amplitude variations while ignoring smaller-scale changes. Before computing the en­
velope, the time waveform is rectified by inverting all negative-going waveform com­
ponents to positive-going ones. The tracking algorithm is designed to follow the recti­
fied input signal when its amplitude increases, while decaying in accordance with a 
specified time constant (D when the input level falls. 

Discrimination oflarger versus smaller-scale amplitude variations is determined by 
the decay-time constant used, where different values of Twill cause the envelope to 
reflect signal features of different time scales. With a large T -value, longer, slower vari­
ations are tracked and retained while shorter variations are smoothed away. A small 
T-value, in contrast, produces an envelope that retains detailed aspects of amplitude 
modulation in the original signal. The optimal T-value for a particular signal type must 
be determined empirically, and should typically be both small enough to retain signifi­
cant amplitude-modulation features and large enough to reveal the desired amount of 
overall envelope shape. 

Amplitude envelopes can be used to measure duration, onset and offset patterns, 
amplitude modulation, intensity variation between notes, and time-varying intensity 
of waveforms. Envelopes can be used in synthesis to isolate and manipulate a sound's 
amplitude-time characteristics. Amplitude envelopes can also be used to quantitatively 
derive the average amplitude behavior of an ensemble of signals (by averaging the entire 
set of envelope functions), or to compare the similarity of amplitude behavior between 
notes (by cross-correlating the envelopes). For playback purposes, the amplitude char­
acter of a waveform can be removed by dividing the signal by its envelope function, 
producing a constant amplitude signal. The amplitude modulation of a signal envelope 
can be derived and analyzed mathematically by deriving a smoothed amplitude enve­
lope (using a larger n that is subtracted from the original envelope, leaving only the 
modulation function (see discussion below and in Beeman 1996b). 

3.2 
Gate Functions 

While the amplitude envelope allows the researcher to measure the time-varying char­
acteristics of a signal at various levels of time resolution, one is sometimes interested 
~nly in the overall temporal pattern of a sequence of sounds. A useful technique for 
temporal analysis at this level is to convert ~e amplitude envelope into a gate function 
(illustrated in Figure 4; also see Beeman 1996b). This continuous time function has only 
two values, used to distinguish signal events from silences. It is derived by comparing 
the amplitude envelope to a threshold level, which is normally set just above the signal's 
baseline noise level. The gate function is assigned a value of 1 wherever the signal exceeds 
the threshold and, zero elsewhere. It is· usually also desirable to require the signal to be 
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present or absent for some minimum interval before gate-function polarity can change. 
This allows the algorithm to respectively reject short noise bursts and bridge brief am­
plitude gaps within a single coherent event. 

Overall, the gate function is a powerful tool that can be applied on a variety of scales 
in both the time and frequency domains. Applied to temporal features, gate functions 
can be used to characterize durations of both individual notes and entire songs, pro­
ducing objective groupings of successive sounds and silences. Temporal variation in 
repeated note sequences can be characterized by measuring the durations of notes and 
inter-note silences and collecting the results in two corresponding histograms. These 
histograms can then be compared among both species and individuals. The similarity 
between gate functions can also be quantified by calculating their cross-correlation 
values, for example, to characterize the temporal similarity among trill sequences from 
different individuals of a species. An example of the application of gate-function analy­
sis to spectral parameters is detection of the bandwidth of frequency peaks. 

4 
Spectral Analysis 

The power spectrum of a signal is most commonly derived by Fourier transformation 
of the time waveform, which is a mathematical integration technique that characterizes 

Digital Signal Analysis, Editing, and Synthesis 65 

the amplitude levels of the various frequencies that are present (see Clements, this Vol­
ume, for discussion of Fourier methods). The first digital Fourier technique was the 
discrete Fourier transform (DFT), while an efficient computational algorithm known as 
the fast Fourier transform (FFT) later made this technique routinely available in digital 
acoustic analysis systems. 

4.1 
Power Spectrum Features 

In generating Fourier-based power spectra, the researcher must consider the time-ver­
sus-frequency-resolution trade-off, selection of a particular transform window, appli­
cation of transform smoothing, and (where absolute energy levels are important) scal­
ing the transform. Various aspects of these issues are discussed elsewhere in this Vol­
ume (see Clements, and Owren and Bernacki), and by Beeman (1996b), and only the 
most important points are summarized here. 

The bandwidth of a signal isdefmed as its maximum frequency range, in other words, 
a signal containing frequencies up to 10kHz has a 10-kHz bandwidth. The time resolu­
tion and frequency resolution of a spectral measurement express its degree of inherent 
temporal and spectral uncertainty, respectively. When Fourier transforms are used, 
resolution is determined solely by the physical duration of the transformed time signal 
( n. and does not depend on digital sampling rate except as the latter affects analysis 
duration. Time resolution is then T seconds, while frequency resolution is 1 I T Hz. 

For measurement purposes, a silent interval can be added at the end of the signal 
before transforming in order to produce a smoother spectrum, a useful procedure re­
ferred to as zero-padding. Zero-padding will be beneficial up to an overall segment 
length of about 4 times that of the original signal (e.g., 1024 data points plus 3072 zeroes). 
Mathematically, zero-padding increases the density of computed points in the Fourier 
spectrum, thereby achieving better sampling of the true underlying spectrum. None­
theless, maximum spectral resolution is limited by the length of the original signal with­
out zero-padding. 

In Fourier analysis, time and frequency resolution are mutually constrained by a 
trade-off known as the time-bandwidth product, meaning that the product of time reso­
lution and frequency resolution is al~ays equal to 1. As a result, improving resolution 
in one domain necessarily degrades resolution in the other. For example, a 100-msec 
temporal resolution means that the time of occurrence of any acoustic feature of interest 
can be pinpointed only within a 100-msec interval. The associated spectral resolution 
of 10 Hz implies that the frequency of any acoustic feature of interest can only be pin­
pointed within a 10-Hz interval. Improving temporal resolution to 10 msec dilates the 
handwidth of spectral uncertainty to 100 Hz, while sharpening the latter to 5 Hz dilates 
time resolution to 200 msec. This relationship (also known as temporal-spectral uncer­
tainty) is discussed and illustrated by Beecher (1988), and Gerhardt (this Volume). 

Fourier analysis of a short segment of a continuous sound can produce mathematical 
artifacts due to the abruptness of the segment's onset and offset. To minimize these 
edge effects, a window function is usually applied to the signal before transformation 
to taper its beginning and ending amplitudes. A rectangular window provides no taper-
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ing, while a Hanning window varies sinusoidally between a beginning value of o, a center 
value of 1, and an ending value of o. The Hamming window is similar to the Hanning, 
but begins and ends on a value greater than zero. Transform windows differ in the 
manner and extent to which they blur the true underlying spectrum and the choice 
involves unavoidable trade-offs. The Hanning window, for instance, separates closely 
spaced harmonics or sidebands better than does the rectangular window, but also 
broadens and delocalizes the exact frequency of these bands. Overall, however, the Han­
ning window is the best choice for biological sound analysis (see also discussion by 
Clements, this Volume). 

Digital power spectra are typically fuzzy, and it is usually desirable to smooth them 
in order to see the underlying contour more clearly. Smoothing is usually performed 
through the running-average technique, in which each point in the power spectrum is 
recomputed as the mean value of itself and a number of adjacent points (specified as 
the width of the smoothing window). Smoothing should be considered an integral fol­
low-up to the calculation of a digital power spectrum. Optimal smoothing width de­
pends on the scale of the features of interest. Larger smoothing widths, for instance, 
emphasize overall spectral shape but suppress fine frequency variation, such as closely 
spaced harmonics. This distinction is illustrated in Figure 5, which shows the power 
spectrum of a human vowel sound conditioned by two different smoothing widths. The 
first was smoothed with a 50-Hz win~ow and shows the harmonic energy components 
produced by periodic vocal-fold vibration. The other spectrum was twice smoothed 
using a 150-Hz window. The effect is to average across individual harmonics, revealing 
an overall spectral shape. Frequency resolution of the transform before smoothing was 
0.76 Hz, time resolution was 1.32 sec, and a Hanning window was used. 

-40 

-50 

-60 .. 
.t:: 

~ 
-70 .0 

"tl .. .. 
"tl 

~ -80 c. 
~ 

-90 

-100 

-110 
0 .5 1 .0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Frequency : KHz 

OF: 0. 76 Hz T-Lo: O.ms T-Hi: 800.ms FFT:1 6384 Wind:HANN Sm: 50. 

Fig. 5. Power spectra of a vowel sound from human speech illustrating the effects of smoothing 
window widths of SO Hz (light trace) and ISO Hz (bold trace). 

5.0 

Digital Signal Analysis, Editing, and Synthesis 67 

Often, the researcher needs only to measure relative energy levels within a power 
spectrum, or to compare energy levels between different spectra obtained under con­
stant conditions. Sometimes, however, measurements of absolute sound levels are re­
quired. In these cases, spectral energy must be explicitly related to some physical quan­
tity, such as pressure or acceleration. Such relationships are complex; more detailed 
discussions can be found in Randall (1977) and Beeman (1996b). In brief, power spectra 
should be displayed in decibel (dB) units relative to 1 Volt-RMS in the source time­
signal, so that a 1-Volt-RMS sinewave signal is transformed to a nominal peak spectral 
level of o dB. This relationship is affected by a variety of factors, including spectral 
density, the transform window used, and the energy-versus-power units chosen for a 
particular application. Power spectra can be converted to physical units by applying 
the calibration factor of the measurement system (e.g., microphone, amplifier, re­
corder), which is the ratio of the physical input (such as sound pressure) to electrical 
output (Volts). 

4.2 
Measuring Similarity Among Power Spectra 

As in the temporal domain, patterning in the frequency spectrum can represent a bio­
logically significant aspect of an acoustic signaling process. It is therefore of interest to 
compare the power spectra derived from various sounds, for instance with respect to 
overall sound similarity and relative frequency-shift effects (in which signals show a 
similar spectral pattern but differ in the absolute frequency position of important spec­
tral peaks). These characteristics can be quantified by cross-correlating pairs of power-
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spectrum functions (Beeman 1996b). This computation produces both an overall cor­
relation value and mean frequency-shift for each pair, as illustrated in Figure 6. The 
results of pairwise similarity analysis over an entire data set can be collected in matrices 
and analyzed using multivariate statistical techniques like multidimensional scaling to 
reveal clustering tendencies. Two potential applications of this approach are analyzing 
the level of spectral similarity among individuals and species, and characterizing spec­
tral changes occurring during ontogeny. 

4.3 
Other Spectral Analysis Techniques 

Spectral analysis can also be conducted using techniques that are not based on the 
Fourier transform. One technique is zero-crossing analysis (ZCA; Greenewalt 1968; 

Dorrscheidt 1978; Staddon et al. 1978; Margoliash 1983). In this approach, the frequency 
content of a time-signal segment is calculated by measuring successive time intervals 
at which the waveform crosses the zero-Volt line, and computing the reciprocal of each 
such period. The principal advantage of ZCA is that time and frequency resolutions can 
be as much as ten times greater than in Fourier analysis, because there is no inherent 
time-frequency resolution trade-off involved. The principal disadvantage ofZCA is that 
signal components other than the fundamental frequency (e.g., higher harmonics and 
noise) strongly alter the zero-crossing points in the waveform, degrading the frequency 
measurements. Fourier transforms, in contrast, produce measurements based on mul­
tiple waveform cycles, mitigating the effects of noise, and are unaffected by the presence 
of higher-order harmonics. Thus, while ZCA avoids the time-bandwidth product limi­
tation, it lacks the performance stability and noise-immunity associated with the 
Fourier transform. 

A statistical technique for spectrum estimation called linear predictive coding (LPC; 
see Markel and Gray 1976, as well as Owren and Bernacki, and Rubin and Vatikiotis­
Bateson, this Volume) is widely used for the spectral measurement, modeling, and syn­
thesis ofhuman speech and has also been applied to nonhuman subjects. This technique 
models the sound spectrum as a sum of spectral resonances, as in the human vocal tract, 
and consideration should be given to its appropriateness to sound structure and pro­
duction physiology before application to other species (see Owren and Bernacki for 
detailed discussion of this issue). 

5 
Spectrographic Analysis 

A frequency-time spectrogram expresses the time-varying spectral content of a signal. 
It displays energy in three dimensions - amplitude, frequency, and time - where the 
amplitude of a signal component is expressed visually as the darkness of an area dis­
played on axes representing time and frequency. Two spectrograms of the human 
speech utterance "dancing" are shown in Figure 7, produced using approximately the 
wide and narrow frequency bandwidths traditionally used in the study of acoustic pho-
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Fig. 7. Narrowband (24Hz bandwidth, bottom paneiJ and wideband (195Hz bandwidth, top panel) 
digital spectrograms of the human speech utterance dancing" 

netics. This analysis technique was made widely available with the invention of the 
analog sound spectrograph (Koenig et al. 1946), an instrument that also became known 
as the sonagraph, the product of which is correspondingly called a sonagram. Spectro­
graphic analysis can be enormously useful in discerning spectral-temporal patterns, 
harmonic structure, and general similarity among sounds, and has historically been the 
preferred method for investigating bioacoustic signals. 

Just as a digitized waveform represents a sampled, numerical version of a physical 
signal, a digital spectrogram is a sampled, numerical version of the traditional, analog 
spectrogram. In essence, a digital spect{ogram is a two-dimensional, frequency-by-time 
matrix in which each cell value represents the intensity of a particular frequency com­
ponent at a given time. Each column in this matrix represents the sound spectrum 
derived over a short time segment. A digital spectrogram is generated by stepping a 
short analysis window across the waveform and calculating the discrete Fourier trans­
form of the "windowed" waveform segment at each step. The spectrograms shown in 
Figure 7 are digital, created using this stepping process, which is illustrated in Figure 8. 
The spectrogram is displayed on the computer screen by assigning numerical amplitude 
gradations either to a range of gray shades or to various colors. The matrix can also be 
shown in a three-dimensional plot, or waterfall display, which shows each power spec­
trum slightly offset from its neighbors on a diagonally oriented time axis. 

Digital spectrograms can be used in different ways. First, they can be examined visu­
ally, using human judgment to discern patterns and relationships among sounds. Sec-
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ond, unlike the analog case, digital representations can be analyzed using mathematical 
tools to characterize acoustic properties of interest. This numeric approach allows the 
researcher to, for instance, measure onset and offset characteristics of notes or syllables 
both in the time and frequency domains, extract time-varying frequency contours, cal­
culate an average, or template, representation from an ensemble of spectrograms, quan­
tify spectrogram similarity through cross-correlation, and perform pattern recognition 
and sound classification using a variety of image analysis, similarity, and statistical 
techniques. 

5.1 
Spectrogram Generation 

Essential considerations in spectrogram generation include time and frequency reso­
lution, the number of transforms used, time granularity, and characteristics of the 
analysis window. As digital spectrograms are based on DFT calculation, the transform 
parameters used strongly influence the resulting representation. To interpret spectro­
grams accurately, it is essential to understand these parameters and their effects. These 
issues are discussed in Beeman ( 1996b) and only the most important points are reviewed 
here. Flanagan (1972) and Clements (this Volume) also provide brief mathematical de­
scriptions of DFT -based spectrogram generation. 

Time-frequency resolution is constrained by the time-bandwidth product, as dis­
cussed earlier. While finer time resolution reveals fmer temporal features, the accom­
panying coarser frequency resolution blurs spectral features. Conversely, achieving 
finer frequency resolution of these features tends to obscure their temporal locations. 
These outcomes are clearly illustrated in the two spectrograms shown in Figure 7, which 
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Fig. 8. Generation of a digital spectrogram by applying a transform window to successive segments of 
the time waveform. The user controls the length of the window and the degree of overlap between 
adjacent windows 
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are drawn respectively with wideband (195 Hz, 5 ms) and narrowband (24Hz, 42 ms) 
resolutions. Optimum time and frequency resolutions are chosen on the basis of the 
signal features of interest and the relative importance of temporal and spectral behavior 
in the analysis (Beecher 1988). Spectrograms with high time and frequency resolution 
can be produced by non-Fourier-based techniques such as Wigner and Gabor trans­
forms, which avoid the time-bandwidth limitation (Loughlin et al. 1993). These non­
linear techniques are promising but can introduce spurious spectral components when 
applied to non-tonal sounds, and should be used carefully. 

Selecting the transform window for spectrographic representation involves essen­
tially the same considerations that apply in calculating a power spectrum. Relative to a 
rectangular window, the Hanning window produces finer, higher-contrast spectro­
grams, and is recommended for general use. The Hanning window is useful in separat­
ing closely spaced signal harmonics or sidebands, which are blurred by a rectangular 
window. On the other hand, the Hanning window broadens and delocalizes the bands, 
making exact frequency determination more difficult. 

5.2 
Spectrogram Display 

As noted earlier, digital spectrograms are displayed by converting the values associated 
with individual cells in the frequency-time matrix to gray shades or colors on the screen. 
The intensity display range of the spectrogram should be matched to the dynamic range 
of the signal. The display range is the range of screen display levels and varies from 
darker shades for higher amplitude levels to lighter shades for lower amplitude levels, 
with white representing the absence of energy. The dynamic range is the difference 
between the highest and the lowest numerical signal values in the matrix. By varying 
the display range, the user can emphasize features associated with different intensity 
levels in the spectrogram. For example, displaying the upper 40 dB of a spectrogram 
can highlight the signal by causing lower-amplitude, background noise components to 
lighten or disappear, while narrowing the range to the upper 20 dB may suppress even 
low-amplitude signal components, producing a silhouette spectrogram. Other tradi­
tional spectrograph features can also be emulated digitally, such as the high-frequency 
shaping filter used to enhance high-frequency components by increasing their relative 
amplitude. 

In the traditional analog spectrogram, the number of transforms involved is effec­
tively infmite, since the analyzer moves continuously in the temporal domain. In a 
digital spectrogram, a fmite number of transforms are calculated, producing visible 
time-domain granularity. This granularity can be reduced by computing a larger 
n,umber of transforms, which increases the processing time required. This trade-off can 
be ameliorated by interpolating additional columns and rows between the original ones 
in the spectrogram matrix during the display process. This method is quite effective in 
increasing the smoothness and visual resolution of the spectrogram display, but does 
not improve the underlying mathematical time and frequency resolutions. 
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5.3 
Spectrogram Parameter Measurements 

Computer-based spectrographic analysis typically involves a spectrogram screen dis­
play and a cursor used to measure features of interest. Results of such measurements 
are typically stored in a text file for further analysis. Some systems allow the user to 
navigate the spectrogram, displaying and measuring waveform and power-spectrum 
cross-sections directly. A further enhancement is the ability to view sound data con­
tinuously on a real-time, scrolling spectrographic display (Beeman 1991, 1996a), pausing 
the display as necessary to make screen measurements. 

Computer-based spectrographic screen measurements are faster and more accurate 
than traditional approaches involving manual measuring instruments, but are still 
manual and thus do not represent a theoretical advance. Truly new approaches include 
numerical techniques which analyze the spectrogram matrix to measure sound parame­
ter values, and image analysis techniques for the recognition of sound features. For 
example, time and frequency boundaries in the spectrogram can be extracted in a man­
ner analogous to gate-function analysis by locating the coordinates at which matrix 
values exceed specified threshold levels. This technique can be used to characterize the 
temporal and spectral ranges of the signal, allowing automation of the editing ~d 
analysis process by identifying the temporal segments to be extracted, or the boundanes 

of specific frequency bands (see Figure 9). 
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6 
Classification of Naturally Occurring Animal Sounds 

In the remainder of this chapter it will be useful to refer to specific sound-types based 
on their distinctive acoustic features. The terms used for these signals are drawn from 
the working nomenclature of bioacoustics researchers. Eight basic sound-types are de­
lineated, reflecting both temporal and spectral structures. Each is briefly described be­
low in the context of specific examples from various species, and illustrated by wave­
forms and spectrograms in Figure 10. 

6.1 
Properties of Ideal Signals 

6.1.1 
Periodicity 

A brief explanation of the applicable, engineering-based terminology is also helpful (see 
Gerhardt, this Volume, for a more complete discussion). In this literature a distinction 
is made between periodic and non-periodic signals. Periodic signals are characterized 
by repeated amplitude cycles in the time-waveform. In a naturally occurring biological 
signal, such periodicity typically represents the repeated operation of a sound-produc­
ing mechanism like vibration of a membrane (e.g., syringeal sound production in birds; 
see Gaunt and Nowicki, this Volume) or in paired tissue structures (e.g., vocal folds 
underlying laryngeal sound production in mammals, including nonhuman primates 
and humans; see Rubin and Vatikiotis-Bateson, and Owren and Bernacki, this Volume). 

Periodic sounds are classified as being either simple (sinusoidal or pure-tone), con­
taining energy at a single frequency, or complex, containing energy at multiple frequen­
cies. In the latter, spectral energy occurs in the fundamental frequency (corresponding 
to the basic rate of vibration in the underlying sound-producing structure), and its 
harmonics (spectral components occurring at integer multiples of the fundamental fre­
quency). Periodic sounds are contrasted with aperiodic sounds whose amplitude vari­
ation does not repeat cyclically. Aperi?dic sounds appear noisy, and their spectra can­
not be expressed as a fundamental frequency and its harmonics. Aperiodic sounds can 
result from a single, sharp impulse like a click, or from inherently unpatterned, turbu­
lent airflow. Note that these sound types are idealized in that no naturally occurring 
sound would be likely to be a pure tone, nor to repeat exactly from cycle to cycle. 

6.1.2 
Amplitude Modulation 

Amplitude modulation (AM) refers to changes in the overall energy level of a signal 
occurring over time (see Stremler 1977). As used here, this term refers to any periodic 
variation in intensity about an average intensity level, or slow changes in intensity that 
may not be cyclical in nature. The frequency of the energy component whose intensity 
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Fig. 10. Classification of eight basic sound types based on biologically relevant temporal and spectral 
properties. Representative waveforms (top panels) and spectrograms (bottom panels) are shown for 
each 
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is changing is called the carrier frequency, the rate of envelope variation is the modula­
tion frequency, and the magnitude of variation is expressed by the modulation index. 
Thus in Figure 20, a 1000-Hz signal whose peak amplitude varies between o.8o and 1.20 
at a rate of 100 times per second has a carrier frequency of 1000 Hz, a modulation 
frequency of 100Hz, and a modulation index of 0.20. AM patterning is readily produced 
and is often of functional significance in bioacoustic signals, for instance as an impor­
tant component of sound character, or in providing clues about the physical nature and 
operation of the sound-producing mechanism. 

6.1.3 
Frequency Modulation 

Frequency modulation (FM) refers to changes in the instantaneous frequency of a signal 
over time (see Stremler 1977). As used here, it refers to any periodic variation of instan­
taneous frequency about an average frequency value, or overall frequency changes that 
are not cyclical in nature. In a signal that varies in a periodic fashion, the center fre­
quency of the modulated energy component is called the carrier frequency, the rate of 
variation is the modulation frequency, and the frequency magnitude of the variation is 
the modulation depth. Thus, a signal that varies between 980 and 1020 Hz at a rate of 
ten times per second has a carrier frequency of 1000 Hz, a modulation frequency of 10 
Hz, and a modulation depth of 20 Hz. 

6 .1.4 
Biologically Relevant Sound Types 

In addition to the above terminology, bioacousticians have devised terms to express 
the various sound structures in naturally occurring communication signals. These are 
described here and illustrated in Figure 10 in order of increasing temporal and spectral 
complexity. Tonal sounds contain a single, dominant frequency component at each 
time instant, although frequency and amplitude may vary with time. A dominant fre­
quency is one that is significantly higher in amplitude than any other frequency com­
ponent present and is often the perceptually salient spectral component. Note, however, 
that the perceptual significance of any aspect of a bioacoustic signal can only be exam­
ined through explicit testing, as described in this Volume by Cynx and Clark, and Hopp 
and Morton, who examine laboratory- and field-based methods, respectively. Tonal 
sounds, which often resemble whistles, include many bird songs and signals produced 
by marine mammals (e.g., dolphins and beluga whales, Delphinapterus leucas). Tonal 
sounds with periodic FM are single-frequency sounds that show regular, often rapid 
pitch variation, whose auditory quality can resemble a harsh buzz rather than a whistle. 
Because they exhibit only one frequency at a time, they are considered tonal and are 
commonly observed among birds, especially warblers. The dominant frequency in both 
types of tonal sounds may represent a fundamental or a higher-level harmonic. For 
instance, Gaunt and Nowicki (this Volume) discuss how filtering in the vocal tract of 
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song?irds can shape the sound by suppressing energy at the fundamental, leaving the 
domrnant frequency at a higher harmonic. 

Polytonal sounds contain two or more spectral components that are not harmoni­
cally related, representing the operation of two or more independent periodic sound­
p:oducing mechanisms. An example is the two-voice phenomenon of birdsong, also 
discussed by Gaunt and Nowicki (this Volume). 

Pulse-repetition signals consist of a series of energy bursts whose acoustic structure 
may be constant or may vary between pulses. The pulses themselves may be tonal, show 
multi.ple frequency components, or exhibit broadband spectral energy, and may be 
amplitude- or frequency-modulated. These sounds are produced by a variety of species, 
including anurans, marine mammals, birds, and nonhuman primates. Their audible 
quality is often a repetitive buzz and can incorporate underlying pitch variation over 
the pulse sequence. 

Sparse-harmonic sounds contain a relatively small number of harmonically related 
spectral components, and range in sound quality from a harsh whistle to a light rasp. 
Dense-harmonic signals contain a larger number of spectral components and sound 
more harsh or nasal than sparse-harmonic sounds. Examples include chickadee dee 
notes, humpback whale (Megaptera novaeangliae) cries, nonhuman primate calls, and 
human speech sounds in which vocal fold vibration (voicing) occurs. 

Noisy-harmonic sounds consist of a combination of tonal or harmonic components 
with significant additional noise. These signals have a harsh auditory quality in pro­
portion to their noise content. Examples include nonhuman primate vocalizations, and 
some calls produced by starlings and crows. 

Spectrally structured noise consists of noise energy with one or more time-varying 
spectral peaks or other coherent spectral structure. Examples include nonhuman pri­
mate screams and barks, Mexican chickadee (Parus sclateri) calls, and fur seal vocali­
zations. Sounds like nonhuman-primate screams that show pronounced spectral peaks 
can give an audible impression of time-varying pitch. In other cases, the sound quality 
may be of a grunt, bark, or roar with little pitch impression. 

7 
Time-varying Frequency Analysis 

I 

Many sounds involve frequency variation over time, and this variation is often signifi-
cant in the communication process. Frequency-time analysis involves the measurement 
and characterization of such variation, and is concerned with the duration, range, and 
patterning of spectral changes including, for example, maximum and minimum fre­
quencies and the spectral patterns of different sound types. Tonal and harmonic sounds, 
in particular, can be characterized effectively by their time-varying dominant fre­
quency, which will be referred to as the spectral contour of a signal (Beeman 1987, 1996b). 
Mathematically, the contour value at each instant is the frequency containing the most 
energy, and this can be visualized as the frequency "spine" of the sound's spectrogram. 
Depending on the sound, the spectral contour may represent the fundamental fre­
quency or a higher harmonic. 



78 K. Beeman 

Spectral contour analysis represents a powerful tool for characterizing tonal and 
harmonic signals. The resulting function can be measured, manipulated, and compared 
statistically in the same way as the sound's amplitude envelope. It is more comprehen­
sive than individual sound parameters, and mathematically more tractable than the 
spectrogram as a whole. Once derived, spectral contours can be used to automatically 
extract and measure frequency-time features such as contour minima and maxima, rate 
of frequency change over time, frequency range, and signal duration. Contours can be 
used as the basis for similarity analysis, which can be advantageous for harmonic or 
noisy sounds that are less amenable to similarity measurement by cross-correlation of 
the entire spectrogram (discussed below). 

7.1 
Deriving Spectral Contours 

Any means of determining the instantaneous dominant frequency of a sound can pro­
duce a spectral contour function. This section discusses several approaches. More ex­
tended discussion and additional references are provided by Beeman (1996b). 

Dominant frequency extraction can be performed by determining the frequency at 
which each column of a digital spectrogram achieves maximum amplitude, then re­
cording these frequency values as a continuous time function- a technique referred to 
here as spectrogram contour detection (SCD; see Beeman 1987, 1996b; Buck and Tyack 
1993) and illustrated in Figure 11. Because SCD is based on Fourier analysis, it is inher­
ently frequency-selective and contours can be extracted successfully from time signals 
containing both multiple harmonics and broadband noise. In fact, SCD is suf~ciently 
immune to noise components that it has been used successfully to extract n01se-free 
playback stimuli from field recordings (see below). 

SCD may not function effectively on sounds whose dominant frequency jumps be­
tween harmonics [such as human speech, nonhuman primates, or the black-capped 
chickadee's (Parus atricapillus) dee note] , or which contain noisy components with 
time-varying spectral peaks. For such sounds, the frequency values returned may jump 
between harmonics or momentary peaks in the noisy spectrum. In these cases, accurate 
frequency contours can nonetheless be obtained by hand-drawing over a frequency­
magnified spectrogram display using a mouse or some other tracing method (Beeman, 
1996b). Existing contours can be edited in the same manner for smoothing or error 
correction. 

Zero-crossing analysis (ZCA), can also be used to derive spectral contours, and can 
yield contours with very high time and frequency resolution on tonal sound material. 
The limitation of ZCA is that it cannot be used effectively on sounds containing har­
monic or noise energy. However, ZCA can be a useful technique, as noted with respect 
to sound synthesis below. Hilbert transform analysis (Dabelsteen and Pedersen 1985; 
Oppenheim and Schafer 1989) applies the mathematics of complex variable theo~ to 
decompose any tonal or harmonic time signal into the product of a frequency functwn 
F(t) and an amplitude function A(t). With tonal sounds, Hilbert analysis produces pre­
cise and useful results, but like ZCA, it degrades in the presence of harmonic and noise 
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Fig. II. Spectral contour detection applied to three swamp sparrow notes, showing spectrographic 
representations with the extracted pttCh contours superimposed (top panel), the pttcb contours alone 
(middle panel), and the waveforms (bottom panel). 

energy. Like ZCA, Hilbert analysis is not the method of choice in most biological appli­
cations, but can perform well on ton,U or nearly tonal material 

7.2 
Sound Similarity Comparison 

Researchers have long sought to gauge the overall similarity of various sounds, for 
instance to relate signal acoustics to ontogeny, individual variation, geographical loca­
tion, and species identity. Sound comparison has traditionally been performed either 
by comparing sounds on a qualitative basis (e.g., Borror 1965; Kroodsma 1974; Marler 
and Pickert 1984), or by reducing sounds to significant parameters that can be compared 
statistically (e.g., Nelson and Croner 1991). The first approach includes judgments in­
volving auditory comparison of sounds and visual comparison of spectrograms, both 
of which can include bias related to human perceptual processing, and thereby lack 
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objectivity, repeatability, and mathematical foundation. The second approach is bette.r 
in these respects, but reducing a complex sound to a limited set of parameters may fail 
to capture all its salient aspects and parameter choice is subject to bias. Nonetheless, 
waveforms, power spectra, and spectrograms have all been used as sources for a wide 

variety of parameters. 
Parameter-based sound similarity has been measured in a number of ways. Nelson 

(1992), for instance, used the simple Euclidean distance between paramet~r vectors (i.e., 
the square-root of the sum of the squared differences betwee~ correspondmg p_arameter 
values) as a similarity metric. Parametric and nonparametnc analyses ofvanance can 
be used to determine which features differ statistically across different sound types. 
Various multivariate statistical techniques (see Sparling and Williams 1978 for a review) 
have been applied as well, including discriminant-function analysis (Hauser 1991) and 
principal-components analysis (Martindale 1980; Clark 1982; Nelson and Croner 1991). 
These approaches have used the proportion of variance explained as a mea~ure of t~e 
significance of various sound features and have classified sounds on the basts of statts­
tical clustering on these features. Multidimensional scaling can also ~e ~sed to ~or~~ay 
the clustering tendencies within a dataset, for instance based on patrwise srmilanttes 
between sounds (Clark et al1987; Hauser 1991). 

Because spectrograms provide an intuitive overview of ~e _spe~tr~ ~d temper~ 
characteristics of a sound, they are a desirable basis for quantitative srmilanty com pan­
sons between signals. With digital spectrograms, similarity can be measure~ by co~­
paring the complete numerical matrices underlying the visual re~resen~atwns. Thts 
approach has the advantage ofbeing objective and repeatable ~d ~f mc~u~~ the whole 
sound rather than individual, measured parameters. Quantitative srmilanty can be 
measured by calculating the normalized covariance between ~o s~ectrogr~~ at suc­
cessive time-offsets (Clark et al. 1987). This process can be VIsualtzed as shdmg two 
transparencies containing the spectrograms over each other al~ng the time a:'is, and 
measuring the degree of overlap between the images at each pomt. The resultmg cor­
relation function, R(T), is a sequence of correlation values representing spectrogram 
similarity as a function of time-offset. The peak value of R(T) quantifies the maximum 
similarity between the two spectrograms. 

In this approach, the spectrograms are first normalized for overall amplitu~e and 
time-offset becomes a variable (nonnalization refers to the process of remoVIOg the 
variation in one sound feature from an ensemble of sounds, rendering the signals 
equivalent on that particular parameter). The maximum-similarity_v~ue i~ t?en i_nde­
pendent of overall amplitude differences or temporal offs~t in the ong.mal digttal stgnal 
files. Figure 12 shows a spectrogram-based cross-correlatiOn comp~1son between r_wo 
swamp sparrow (Melospiza georgiana) syllables, showing the maxrm'_lffi correlation 
value and time-offset. Because digital spectrograms are based on Founer transforms, 
which have inherent immunity to spectral noise, the spectrogram-similarity technique 
can be used effectively on quite noisy signals. Furthermore, the compari~on can be 
restricted to a specified bandwidth within the spectrograms, thereby excludmg out-of­
band extraneous noise. 

In general, quantitative spectrogram-similarity comparison provides a sensitive and 
comprehensive measure for sounds that generally resemble each other. However, the 
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Fig. 12. Quantifying the overall similarity between two swamf sparrow syllables by cross-correlation 
(top panel) of their spectrograms (middle and bottom panels 

technique can have severe limitations, even for quite similar sounds, unless normali­
zation is performed with respect to characteristics such as mean frequency, frequency 
range (maximum minus minimum frequency), duration, or harmonic interval. In the 
absence of normalization, variation in these features may produce low cross-correlation 
values for apparently similar sounds and mask biologically important similarities. 
Note, however, that removing a parameter's variation from the similarity calculation 
also removes that parameter's influence from the analysis. It is therefore important to 
study clustering tendencies in a dataset with various parameters both included and 
excluded, as well as specifically testing the behavioral importance of these parameters 
empirically. 

Recently developed tools address some of the limitations noted above (Beeman 
1996b). For example, mean frequency differences between individual signals in an en­
semble can be removed by cross-correlating their power spectra and frequency shifting 
the associated spectrograms before cross-correlation. Similarly, differences in signal 
duration can be removed by uniform linear expansion of the time-scale of each spec­
trogram as needed before comparison. Alternatively, sounds can be compared on the 
basis of mathematical functions that are more comprehensive than extracted parame­
ters, but more flexible than spectrograms. Such functions include amplitude-time en­
velopes, pulse-repetition patterns, spectral contours, and power spectra (Beeman 
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1996b ). For example, differences in frequency range and harmonic interval can be over­
come by reducing sounds to spectral contours, performing the necessary normaliza­
tion, and then calculating similarity. 

8 
Digital Sound Synthesis 

Digital signal processing provides a wide variety of techniques for sound synthesis, 
which will be considered to include any significant creation or manipulation of sound 
material, whether based on natural or mathematically specified signals. General ap­
proaches include digital editing, arithmetic manipulation, and generation of sound, 
each of which provides the ability to create precise, repeatable, and incremental signal 
variations. Editing is manipulation of existing sound material by rearranging waveform 
segments in the time domain. Arithmetic manipulation includes both combining and 
altering signals through such operations as addition and multiplicative amplitude scal­
ing using a specific function of interest. Sound generation - creating new waveforms -
is a particularly important technique that can combine elements of both editing and 
arithmetic manipulation with de novo creation of segments or entire signals. 

8.1 
Editing 

Sound editing, as used here, means rearranging existing signal components in time, 
without generating new physical waveforms. Ideally, a digital time-signal editing system 
should be visually based, since the process involves moving sound segments from one 
location to another. Beginning with source and target waveforms on the computer 
screen, the user graphically selects a signal segment and an editing operation to perform. 
The system should provide basic cut-and-paste operations, allowing individual signal 
components to be extracted, inserted, deleted, and concatenated. These processes are 
illustrated in Figure 13. Editing commands can be used to extract or reorder signals for 
analysis, or to alter signals for use in playback experiments, for instance in combination 
with synthesis techniques that can be used to alter the temporal and spectral charac­
teristics of the signal. 

Bioacousticians have long desired a digital spectrogram editor that would be capable 
of extracting, moving, or deleting specified segments in both the time and frequency 
domains. Such an editor would be able to shift a signal's energy components in the 
frequency domain, selectively erase or redraw particular harmonics, and the like 
(Zoloth et al. 1980), then generate the corresponding time signal. However, such capa­
bilities have not developed far because the approach itself is fundamentally problem­
atical. Frequency-based editing changes can cause severe mathematical artifacts in the 
corresponding time signals. For example, changes in frequency characteristics can pro­
duce amplitude modulation in the waveform, while many frequency-band deletions 
simply cannot be transformed back to the time domain. More practicable approaches 
can sometimes be used to produce the desired results, including spectral-filtering and 
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Fig. 13. Using digital signal editing to alter the waveform of a sparrow song (top panel) to set one 
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waveform-conditioning techniques discussed in the following sections (also see Stod­
dard, this Volume). 

8.2 
Arithmetic Manipulation and Generation of Sound 

The arithmetic manipulation of exist1ng waveforms and the generation of new sounds 
are often c~mbined in ~ractice. In fact, many of the functions of the "mythical" spec­
trogram edt tor can be Implemented using combinations of the techniques described 
b_e~ow. Complex signal characteristics like amplitude-envelope shape, spectral compo­
Sition, AM, FM, and phase relationships of individual components can all be modified 
wi~h great precision. Furthermore, temporal and spectral features can be independently 
s_hifted and expanded. The functions used to alter or synthesize a given signal or signal 
element c~ be based on naturally occurring sounds, or created through graphical ap­
proaches like mouse-based drawing, or derived from mathematical functions. 
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8.3 
Synthesis Models 

There are many synthesis models currently in use. Each embodies different assump­
tions about sound structure and sound production, and as a result, different models 
synthesize different sound types better than others. The tonal model, which is described 
in depth below, represents sounds as frequency- and amplitude-modulated sinusoids. 
Because of its mathematical tractability, this model has received much attention in 
animal-related studies, and works well for a wide range of natural sound material, in­
cluding whistles, rapid AM and FM buzzes, harmonic sounds, pulse-repetition signals, 

and some noisy-harmonic sounds. 
Another approach models critical aspects of the physiological processes involved in 

the production of the sound. For instance, many aspects of speech productio~ have 
been modeled in this fashion, as described by Rubin and Vatikiotis-Bateson (thts Vol­
ume). One classic example of this type of articulatory model is the Klatt synthesizer 
(Klatt 1980), which has been extensively used in speech research. This software model 
passes voiced sound (based on periodic energy bursts desi~e~ to mimic vo~al-fold 
vibration pulses) and unvoiced sound (noisy energy that mumcs turbulent a1r flow) 
through a bank of parallel filters that simulates the physical resonances of the human 
vocal tract. The parameters ofthese ftlters are continuously varied, thereby representing 
the time-varying resonances resulting from the articulatory maneuvers of speech. The 
Klatt synthesizer has also been used with nonhuman primates to test the auditory proc­
essing of both human speech sounds (e.g., Hienz and Brady 1988; Sinnott 1989) and 
species-specific vocalizations (e.g., May et al. 1988; Hopp et al., 1992). 

8.3.1 
Tonal Model 

A wide variety of bioacoustic signals can be modeled as tonal or harmonic, and as a 
result can be readily represented, manipulated, and synthesized (e.g., Greenewalt 1968; 
Dorrscheidt 1978; Margoliash 1983; Beeman 1987, 1996b). Such sounds are mathemati­
cally tractable and form versatile building blocks for more complex sounds. The tonal 
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Fig.l4. F(t) and A(t) functions for a tonal sound that descends in frequency from 3000 to 1000Hz, 
while first rising and then falling in amplitude 
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model provides techniques used to synthesize tonal sounds, pulse-repetition sounds, 
and harmonic sums of tonal sounds, and allows for extensive mathematical manipula­
tion of amplitude, temporal, and spectral sound properties. 

Due to the simplicity of its structure, a tonal sound can be completely represented 
by two time functions- a spectral contour, F(t), which represents its time-varying fre­
quency, and an amplitude envelope, A(t), representing its time-varying intensity. As an 
example, the functions shown in Figure 14 describe a sound whose frequency descends 
from 3000 to 1000Hz, and whose amplitude rises from o to a maximum level, remains 
steady, and then declines to o. 

F( t) and A( t) are used to synthesize sounds as follows. Both func tions are represented 
as time signals, with values specifying instantaneous frequency (in Hz) and intensity 
(in Volts), respectively. To recover the original signal, F(t) is passed through a voltage­
to-frequency sinewave generator, producing a constant amplitude signal of time-vary­
ing frequency F(t). This signal is then multiplied by A(t), giving it the appropriate am­
plitude characteristics. This process is schematically illustrated in Figure 15. Mathemati­
cally, the process is justified by Hilbert transform theory, which shows that any signal 
can be decomposed into frequency and amplitude functions, and then recovered from 
these functions without loss of information (Oppenheim and Schafer 1989). Because 
the frequency and amplitude functions are independent, frequency and amplitude fea­
tures can be independently modified, allowing their communicative significance to be 
tested separately. 

F(t) 

Voltage-controlled 
frequency generator 

FM sinusoid 
(constant amplitude) 

FM&AM 
signal 

A(t) 

Fig. 15. How F(t) and A(t) functions are used in conjunction with a voltage-to-frequency sinewave 
generator to produce a synthetic, tonal sound. MUL= Multiply 
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8.4 
Sources of F(t) and A(t) Functions 

8.4.1 
Mathematically Based Functions 

F(t) and A(t) functions can be based on elementary mathematical functions such as 
constants, linear ramps, exponential ramps, sinusoids, and combinations of these. Fig­
ure 16 shows five different F(t) functions , together with the resulting time waveforms. 
The constant function produces a single, unchanging frequency component. Linear­
and exponential-ramp functions produce signals that change in frequency at a constant 
rate (in Hz per second) and at an exponential rate (in octaves per second), respectively. 
A sinusoidal function produces a signal that changes frequency at a sinusoidal rate, for 
instance ten times per second. Custom functions allow the user to create a wide variety 
of PM signals through any combination of mathematical functions and natural sound 
material. 

A(t) functions are created in a similar manner. Figure 17 shows rectangular, trape­
zoidal taper, exponential taper, cosine taper, and sinusoidal functions, and the resulting 
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Fig. 16. Mathematical F(t) functions used in sound synthesis to produce frequency-modulated 
waveforms, S(t) 
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Fig. 17. Mathematical A (t) functions used in sound synthesis to produce amplitude-modulated 
waveforms, S(t) 
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time waveforms. The rectangular function produces a waveform whose envelope 
changes amplitude instantaneously at onset and offset, with constant amplitude during 
the signal. The trapezoidal taper function produces a waveform whose amplitude 
changes linearly between zero and its maximum value at onset and offset. The expo­
nential taper function produces waveform onset and offsets whose amplitudes change 
exponentially. The cosine taper function produces a short, heavy taper, with minimum 
discernible onset or offset. Finally, sinusoidal amplitude modulation is produced by a 
sinusoidal function, and results in periodic variation in the waveform envelope. Am­
plitude functions can contribute to sound quality (as in amplitude modulation), or they 
can simply be used to taper the onsets and offsets of synthesized stimuli before experi­
mental use. Overly sharp onsets and offsets (i.e., rising or falling to full amplitude within 
in a few milliseconds) generate perceptible pops on playback, in addition to injecting 
spurious spectral energy, and should be avoided. 
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F(t) and A(t) functions can be combined and transformed using various mathemati­
cal operations to generate sound features like harmonic complexes, modulation, and 
amplitude scaling. Because they are universal, objective, and readily described, syn­
thetic sounds based on mathematical funct ions are widely used as stimuli for testing 
responses at the neurophysiological level. However, they are generally less successful 
as approximations of naturally occurring biological sounds. 

8.4.2 
Functions Derived from Natural Sounds 

F(t) andA(t) functions can be derived directly from tonal and harmonic natural sounds, 
to allow the researcher to precisely modify frequency or amplitude features for testing 
(Margoliash 1983; Beeman 1987, 1996b). F(t) can be derived from the time waveform, 
using zero-crossing or Hilbert transform techniques, or from the spectrogram, using 
the SCD technique. A( t) can be derived from the amplitude envelope of the time wave­
form, or by Hilbert transform techniques. F( t) and A( t) functions of any shape can also 
be drawn by hand using the mouse. 

While synthesis from mathematical functions involves generation and synthesis -
F(t) and A(t) are generated then combined- synthesis from natural sounds begins with 
an analysis step, in which F(t) and A(t) are derived from the source sound. The process 
of analyzing F(t) and A( t) from natural sounds is summarized in the top panels of Figure 
18. 

9 
Sound Manipulation and Generation Techniques 

Once the F(t) and A(t) functions have been selected or derived, manipulation of an 
existing sound or generation of an entirely new signal can occur. The following sections 
describe these manipulations, includw'ng frequency shifting, time scaling, amplitude 
and frequency modulation, intensity manipulation, harmonic removal and rescaling, 
pulse repetition variation, phase adjustment, noise addition and removal, and the deri­
vation of template sounds. Further details are described by Beeman (1996b). In the 
simple example shown in Figure 18, the synthesis manipulation consists of time-revers­
ing the sound. Based on the original sound's spectrogram and time waveform (at the 
top of the figure), respectively, the sound is first analyzed into F(t) and A(t) functions. 
These functions are then reversed to produce the new, altered functions F'(t) and A'(t). 

F'(t) is used to synthesize a constant-amplitude sinusoid representing the frequency 
variation, which is then multiplied by A '(t). The spectrogram and waveform of the syn­
thetic sound are shown at the bottom of the figure. 
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Fig. 18. The complete analysis-manipulation-synthesis process. F(t) and A(t) functions are extracted 
from a natural sound, reversed in time (in this example), and then resynthesized to produce a 
time-reversed synthetic version of the original signal 

.9.1 
Duration Scaling 

89 

Sound duration can be uniformly expanded or compressed without altering frequency 
characteristics, by expanding or compressing both the F(t) and A(t) functions via linear 
interpolation. Attempting to alter temporal features by resampling the time waveform 
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Fig. 19. A synthetic version of the swamp sparrow syllable shown in Fig. I is increased in duration by 
30 %by time-expanding its F(t) and A(t) functions 

itself would introduce severe artifacts. Instead, all manipulations are performed on F(t) 
andA(t), and artifacts are avoided. Figure 19 shows a swamp sparrow syllable (the same 
sound as shown in Figure 1) whose duration has been increased by 30 %by this method, 
without changing its frequency characteristics. This concept can be extended to non­
uniform time expansion or compression, a technique sometimes called dynamic time 
warping, which involves a variable stretching or contracting process. 
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9.2 
Amplitude Envelope Manipulations 

A signal's amplitude envelope may include both short-term periodic and long-term 
non-periodic variation. The former can often be modeled sinusoidally, while the latter 
may represent signal onset or offset, phonetic emphasis, and other slowly varying ef­
fects. As illustrated in Figure 20, a signal's overall amplitude envelope, A(t), can be 
mathematically modeled as the sum of a slowly varying envelope,As(t) (a constant value 
of uni ty in the figure), and a rapidly varying modulation function, Am(t), so that A(t) = 

A,( )+ Am( J A'ftl is derived fromA (t) by smoothing, to remove the rapid modulation. 
TnJ smoothmg window should be wider than the modulation period, but short enough 
to retain the time-varying shape of A,(t). A 15-ms window, for example, might be ap­
propriate for a 100-Hz (i.e., 10-msec period) modulation rate. Am(t) is then obtained by 
subtracting A,(t) from A(t). A,(t) and Am(t) can then be analyzed independently. 

Amplitude envelopes can be manipulated in other ways as well. As noted earlier, 
RMS energy can be equalized among a set of signals, for example to equalize the inten­
sity levels of a series of playback signals created from natural sounds. Alternately, am­
plitude variation can be removed from a signal entirely by dividing the signal by its A( t), 
leaving a signal of uniform amplitude but time-varying frequency. Note that this rna-

r: 
-1.5+---,---,---...,..-----..---,----r---...,..---.....,.--...,...----, 

~ 1.6 

~ 1.2 ., 
~ .8 

c. .4 

Modulated waveform S(t) 

~ o+---,---r--r--4 ....... ---.---r---r--~--,--~ 
Amplitude envelope A(t) = Am(t) +As(t) 

~ :~~/\./\./\./\./\. 
0 5 10 15 20 25 30 35 40 45 50 

Time: msec 

Modulation signal Am(t) 

Fig, 20. An amplitude-modulated waveform JS(t), top panel) and its complete amplitude envelope 
[A [I), middle panel) and amplitude modulauon runcuon [Am(t), bottom panel)] 
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nipulation will amplify any low-level noise segments in the signal. Finally,~ s~gnals in 
an ensemble can be given the same amplitude envelope Aref(t), by mult!plymg each 
signal envelope An(t) by the function Aref(t) I A"(t). 

9.3 
Spectral Manipulations 

9.3.1 
Frequency Shifting and Scaling 

Tonal synthesis allows spectral changes to be made without altering temporal or am­
plitude relationships, because F(t) can be modified independently of A(t) and other 
time characteristics. Uniform frequency shifting is performed by adding a constant 
positive or negative value to F(t), while leavingA(t) unchanged. Because the adjustment 
is made to the frequency function rather than the waveform or spectrogram, the output 
signal is free of artifacts (such as amplitude modulation) that have been a major short­
coming of these other approaches. Figure 21 shows a swamp sparrow syllable whose 
frequency has been uniformly raised by 500 Hz without altering overall duration. Fre­
quency can be shifted logarithmically as well, for instance by multiplying F(t) by a factor 
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Original and frequency-shifted F(t) 
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Fig. 21. A synthetic version of the swamp sparrow syllable shown in Fig. I is shifted upward in 
frequency by 500Hz by adding 500 to its F(t) function 

Digital Signal Analysis, Editing. and Synthesis 93 

of 2 to produce an increase of one octave. F(t) can also be compressed or expanded in 
range to alter the signal's frequency variation about its mean frequency. 

9.3.2 
Frequency Modulation 

Any FM characteristics modeled in an F(t) function can be altered, replaced, or even 
removed. The general approach is to analf2e the signal into two components, a slowly 
varying carrier frequency Fc(t) and rapidly varying frequency modulation Fm(t), so that 
F(t) = Fc(t) + Fm(t), as described by Beeman (1996b). FM parameters are then deter­
mined from these functions. Figure 22 shows an Eastern phoebe (Sayornis phoebe) note 
analyzed in this manner into functions representing the total contour, F(t), its carrier 
frequency, Fc(t), and its frequency modulation, Fm(t), about the carrier. One can then 
measure from Fm(t) the signal's mean modulation frequency (about 86 Hz) and mean 
modulation depth (about 416 Hz). These functions can then be altered to produce a 
synthetic sound with altered characteristics. Independent changes to Fc(t) and Fm(t) 
can be used, for example, to increase or decrease the signal's overall frequency change 
by scaling F,(t), or to double the magnitude of modulation depth by multiplying Fm(t) 
by a factor of 2. Fc(t) and F,.(t) are then recombined to produce a new F(t). 

Total Contour 

Carrier Frequency 

1]-f-~-r---- 1 

0 50 100 150 200 250 300 
nme:msec 

Carrier Modulation 

Fig. 22. The spectrogram of a frequency-modulated Eastern phoebe (Sayornis phoebe) note (top 
panel) is analyzed into its total spectral contour (top middle panel), which is further analyzed into 
carrier frequency (bottom middle panel) and carrier modulation (bottom panel) 
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9.4 
Synthesis of Biological Sound Types 

9.4.1 
Tonal and Polytonal Signals 

Tonal signals are the simplest to characterize and synthesize using the methods outlined 
in this chapter. Polytonal signals are more difficult to synthesize, and the choice of 
modeling approach depends on the original production process. Depending on the 
sound and the species, tones may be either added or multiplied during sound produc­
tion. The former produces tonal sums, while the latter produces AM cross-products 
which can assume complex forms, including harmonics at intervals of the amplitude­
modulation frequency, or sums or differences of the input frequencies. Pitch interac­
tions within the polytonal sound can be subtle or quite dissonant, depending on the 
degree of coupling occurring between the sound sources and the frequencies involved. 
Polytonal sounds can display a great diversity and complexity of spectral characteristics 
and a corresponding variation in sound quality. 

Synthesis approaches for these more complex signals depend on their structure. 
Polytonal sums can sometimes be analyzed by separating the voices via ftltering or 
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Fig. 23. A poly1onal sound produced by a wood thrush (Hylocichla mustelina; bottom panel) is 
synthesized using poly1onal synthesis (top panel) 
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spectrogram contour detection. However, the most complex polytonal sounds, such as 
some chickadee calls, may involve intermodulation between two harmonic voices, and 
therefore require modeling the modulation process itself in order to reproduce the com­
plex spectral relationships. Figure 23 shows a segment of wood thrush (Hylocich/a 
mustelina) song containing the sum of two distinct nonharmonic voices. Because the 
voices occupy different frequency ranges, they can be modeled by analyzing the sound 
into two independent sets of amplitude and frequency functions. 

9.4.2 
Pulse-Repetition Signals 

Pulse-repetition sounds can also arise from a variety of production mechanisms and 
therefore vary widely in structure, and in the techniques used to synthesize them. One 
approach is to generate mathematical functions that are used singly or in combination 
to produce individual pulses, from which a sequence can be built through waveform 
editing. Pulses can be repeated at constant or variable intervals, and the sequence can 
be uniform, show patterned variation (such as stepped changes in frequency or inten­
sity), or be randomly changing. The onset and offset amplitudes of each pulse should 
be tapered, as discussed earlier. 

Alternatively, synthetic pulses can be derived from naturally occurring pulse-repe­
tition sounds (such as anuran vocalizations). The pickerel frog (Rana palustris) call 
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Fig. 24. A pulse-repetition call of a pickerel frog (Rana palustris; bottom panel) is synthesized using 
pulse repetition synthesis techniques (top panel) 
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shown in Figure 24, for example, can be modeled as a sequence ofbroadband FM pulses, 
further modulated by an AM pulse-repetition envelope. The aural impression of this 
sound reflects both the pitch characteristics of its FM behavior and the buzziness pro­
duced by the rapid pulse repetition. F(t) can be obtained through zero-crossing analysis, 
and A(t) through amplitude-envelope analysis. FM and pulse-repetition behavior are 
thus separated. Manipulations include altering or removing the FM component, com­
pressing or expanding the pulse repetition rate, and inserting or rearranging individual 
pulses. 

9.4.3 
Harmonic Signals 

Harmonic sounds can be generated by synthesizing individual harmonics using the 
tonal model, then adding these components together. Because individual harmonics 
are explicitly separated in this approach, they can be individually edited and weighted 
before being recombined. All harmonics can be synthesized from the fundamental con­
tour, F(t), referred to as Po( I). Figure 25 shows a chickadee dee note in its original form 
and in a synthetic version based on this technique. 

Harmonic synthesis proceeds in five steps. First, the fundamental frequency contour, 
Fo(t), is extracted using one of the techniques described above. If the energy is concen-
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Fig. 25. A black-capped chickadee (Parus atricapillus) dee note (bottom panel) is synthesized using 
harmonic synthesis techniques (top panel) 
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trated in the upper harmonics, leaving the fundamental undetectable, one of the visible 
harmonic contours, Fn(t), can be extracted and then scaled by division to recover the 
fundamental. Second, higher harmonic frequency contours, F,(t), F.(t) ... ,F11(t), are de­
ri~ed from F~(t) by integer multiplication (i.e., 2, J ... ,n + 1). Third, corresponding am­
plitude functions, Ao(t), A,( t) ... , An(t), are derived individually from the fundamental 
and harmonic components of the natural sound. An efficient approach developed by 
Balaban (described in Beeman 1996b) derives A 11(t) by automatically tracing the contour 
of the corresponding Fn(t) through the spectrogram and reading successive amplitude 
values. Fourth, waveforms are generated for the individual harmonics, 
(i.e., Sn(t) = An(t) *sin ( mFn(t)] t), by applying tonal synthesis to each pair, F0 (t) and 
Ao(t), F,(t) and A,(t), and so on. Finally, these waveforms are summed to produce the 
composite harmonic signal, S(t) = S0 (t) + S,(t) + ... + Sn(t). 

Harmonic-synthesis techniques can be used to selectively remove or rescale the am­
plitude of individual harmonic components, in order to simplify a sound or test the 
significance of different harmonic components. An individual harmonic is rescaled by 
~ul~iplying t~e c~~responding A,(t) function by some factor and then resynthesizing. 
Stmilarly, an md.iVIdual harmonic can be removed by omitting it from the harmonic 
sum. 

9.4.4 
Noisy Signals 

Noisy signals can be also be synthesized, for instance by adding noise components to 
existing sounds, or by noise, summing noise bands to create spectral patterns. Noise 
signals can be based on uniform or Gaussian, both of which have roughly uniform 
spectral-energy distribution. When adding noise to an existing signal, the noise should 
be amplitude-scaled for a specific signal-to-noise ratio with respect to the signaL This 
is accomplished by separately measuring the RMS levels of signal and noise, and scaling 
these co~ponents accordingly. Noise energy also can be limited to a specific frequency 
band usmg a bandpass fllter, and multiple noise bands can be combined to form a 
s~ectrally structured noisy sound. As before, careful amplitude-scaling of energy in 
d~ffe~ent .frequency bands can be used to explicitly simulate or alter the spectral energy 
dtstnbutlon pattern of a natural soun!l (see also Owren and Bernacki, this Volume, for 
discussion of synthesis of noisy bioacoustic signals) . 

9.5 
Miscellaneous Synthesis Topics 

9.5.1 
Template Sounds 

Tonal synthesis techniques allow the user to derive and synthesize an average "tem­
plate" sound from an ensemble of signals, for instance for morphological analysis or 
playback experiments (Beeman 1996b). The average sound is derived as follows (see 
Figure 26). F(t) and A(t) functions are extracted from each sound sample, then the 
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Fig. 26. Sound template derivation. Frequency and amplitude functions are derived from an 
ensemble of signals (top panel), to create averaged A(t) and F(t) functions (middle panel), from 
which a template sound is synthesized (bo ttom panel) 
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ensemble offunctions is normalized in duration and aligned in time. The F(t) and A (t) 

functions are then averaged, yielding Favg(t) andAavg(t), which can be used to synthesize 
a single template waveform representing the average sound for the entire data set. Note 
that template sounds cannot be obtained by averaging time waveforms (whose random 
phase components would mutually cancel), from parameter measurements (which can­
not be used to regenerate sounds), or from spectrogram averages (which cannot be 
inverse transformed to an artifact-free time signal). 

Template sounds have several important applications. First, they produce an average 
exemplar for sound types that are too complex to be adequately characterized by meas­
urements of sound parameters alone. Average morphological features of the sound can 
then be measured from the template version. Second, individual sounds from the data 
set can be compared to the template sound in order to measure their morphological 
similarity. Third, because template sounds are generated directly from amplitude and 
frequency functions, sound features can be altered systematically by manipulating these 
functions. The researcher can generate an array of test sounds of graduated similarity 
to the template in order to test, for instance, relationships between functional, percep­
tual, and acoustical similarity, the perceptual centrality of the template, the perceptual 
significance of various acoustic features in the template, and the locations and abrupt­
ness of functional and perceptual boundaries in relation to acoustic variation. 

9.5.2 
Noise Removal 

Tonal-synthesis techniques can also be used to remove noise from tonal, and even some 
harmonic signals, by extracting relatively noise-free F(t) and A(t) functions from the 
natural sounds and using these to produce noise-free synthetic versions. This technique 
was developed by Nelson (described in Beeman 1996b ), and has been used to clean up 
noisy field recordings for manipulation and subsequent playback. The success of this 
technique depends directly on the ability to extract accurate F(t) and A(t) repre­
sentations of the underlying signal in the presence of noise, as well as the adequacy of 
the tonal model as a represention of the natural sound. This approach is effective be­
cause of the noise-insensitivity of the ~ourier-transform-based SCD method for deriv­
ing F(t), because noise occurring in A (t) can be reduced by smoothing, and because 
minor artifacts in F(t) and A(t) can be corrected, if necessary, using mouse-drawing 
techniques. As illustrated in Figure 27, this noise-removal technique can produce quite 
dramatic results when applied to field-recordings. 

10 
Summary 

Digital signal analysis technology adds many capabilities to the field ofbiological sound 
analysis. It provides rapid and flexible ways of visualizing sound signals and a reliable 
way of recording and storing them. More important, because digitized signals are nu­
merical, digital technology allows researchers to use mathematical analysis and mod-
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Fig. 27. A natural field sparrow song with a high level of background noise (bottom panel) is 
analyzed and resyntheSIZed (top panel) using tonal-sound techniques for noise removal 

sound analysis techniques made possible by digital signal analysis, and the underlying 
theory and practical considerations. Precise and automated measurements can be made 
on waveforms, power spectra, and spectrograms. Time signals can be converted either 
to amplitude envelopes to analyze their amplitude behavior, or to gate functions to 
visualize, measure, and compare their temporal patterning. Frequency spectra and fre­
quency-time spectrograms of specific sound segments can be calculated digitally and 
measured to characterize sound features. Spectral analysis parameters such as time and 
frequency resolution, transform window, spectral smoothing, and physical scaling 
should be selected carefully for accurate analyses. Real-time spectrographic display is 
also possible. 

Other digital techniques carry sound analysis beyond the scope of traditional analog 
tools. Researchers can digitally extract and calculate spectral contours, which are 
mathematical functions representing a sound's instantaneous time-varying frequency. 
Different contour extraction techniques, such as zero-crossing analysis, spectrogram 
contour detection, or Hilbert transform analysis, can be used depending on sound 
structure. Spectral contours can form the basis of both sound comparison and sound 
synthesis operations. Digital analysis also allows the researcher to compare sounds in 
a variety of ways, based on a variety of sound characteristics. Parameters representing 
isolated sound features can be measured, often automatically, and compared statisti­
cally for similarity. More advanced approaches allow researchers to compare sound 
functions used to represent a sound's entire behavior over one or more characteristics, 
such as amplitude envelopes, power spectra, spectral contours, or spectrograms. These 
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such as amplitude envelopes, power spectra, spectral contours, or spectrograms. These 
functions can be compared mathematically using cross-correlation techniques to meas­
ure quantitative similarity. An ensemble of sounds can be compared pairwise and ana­
lyzed statistically to estimate clustering tendencies, or a sequence of individual sounds 
can be compared to a sound template to measure their graded similarity. 

Another important application of digital sound analysis is sound manipulation and 
synthesis. Digital editing tools can be used to rearrange existing sound material, and 
these replace traditional cut-and-splice tape techniques with faster and more accurate 
interactive screen tools. Digital sound generation techniques can create entirely new 
sounds from mathematical functions for use as auditory stimuli in psychophysical and 
neurophysiological research. Digital synthesis techniques can decompose natural 
sounds into their essential components, which can then be manipulated and recom­
bined to form selectively altered sounds. In this manner, natural biological sounds can 
be varied in detail and then used in playback studies, to explore the behavioral signifi­
cance of individual sound features. Eight natural sound types were described, along 
with techn iques for synthesizing many of them, including tonal sounds, harmonic 
sounds, polytonal sounds, pulse repetition sounds, and noise, and combinations and 
sequences of these sounds. Much natural sound synthesis is based on the tonal sound 
model, which reduces sounds to one or more pairs of amplitude envelope and spectral 
contour functions, which can be independently manipulated to alter sound charac­
teristics. Synthesis manipulations include frequency shifting, time scaling, amplitude 
and frequency modulation, intensity manipulation, harmonic removal and rescaling, 
pulse repetition variation, and noise addition and removal. Finally, digital analysis can 
be used to synthesize an average template sound from a sound ensemble, for feature 
measurement, similarity analysis, or perceptual testing. 
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